Pythagorean
Identities (and their variations)
From the unit circle, using
the Pythagorean Theorem, we see that
x2
+ y2 = 1
Since x = cos θ & y = sin θ, we get:
(sin θ)2 + (cos θ)2 = 1 or
sin2
θ + cos2 θ = 1
1. sin2 θ + cos2 θ
= 1
(sin2 θ = 1 - cos2 θ)
(cos2 θ = 1 - sin2 θ)
|
2. tan2 θ + 1 = sec2 θ
(tan2 θ - sec2 θ = 1)
(tan2
θ = sec2 θ – 1)
|
3.
1 + cot2 θ = csc2 θ
(cot2
θ = csc2 θ – 1)
(1
= csc2 θ - cot2
θ)
|
Opposite Angle Identities (aka Even/Odd
Identities)
1. sin (-A) = - sin (A) 2. cos (-A) = cos (A)
Sum and Difference
Identities
1.
sin(A
+ B) = sin(A)cos(B) + sin(B)cos(A)
2. sin(A - B) = sin(A)cos(B) - sin(B)cos(A)
3. cos(A + B) = cos(A)cos(B) – sin(A)sin(B)
4. cos(A – B) = cos(A)cos(B) + sin(A)sin(B)
Cofunction Identities:
1. sin θ = cos (90° – θ)
|
4. cos θ = sin (90° – θ)
|
2. tan θ = cot (90° – θ)
|
5.
cot θ = tan (90° – θ)
|
3.
sec θ = csc (90° – θ)
|
6.
csc θ = sec (90° – θ)
|
No comments:
Post a Comment