Saturday, 14 September 2013

Basic Trigonometric Identities

Pythagorean Identities (and their variations)

From the unit circle, using the Pythagorean Theorem, we see that
x2 + y2 = 1

Since x = cos θ & y = sin θ, we get:
(sin θ)2 + (cos θ)2 = 1 or
sin2 θ + cos2 θ = 1

1. sin2 θ + cos2 θ = 1
(sin2 θ = 1 - cos2 θ)
(cos2 θ = 1 - sin2 θ)

2. tan2 θ + 1 = sec2 θ
(tan2 θ - sec2 θ = 1)
(tan2 θ = sec2 θ – 1)

3. 1 + cot2 θ = csc2 θ
(cot2 θ =  csc2 θ – 1)
(1 =  csc2 θ - cot2 θ)

Opposite Angle Identities (aka Even/Odd Identities)

1. sin (-A) = - sin (A)                2. cos (-A) = cos (A)


Sum and Difference Identities

1.    sin(A + B) = sin(A)cos(B) + sin(B)cos(A)
2.  sin(A - B) = sin(A)cos(B) - sin(B)cos(A)
3.  cos(A + B) = cos(A)cos(B) – sin(A)sin(B)
4.  cos(A – B) = cos(A)cos(B) + sin(A)sin(B)
Cofunction Identities:  
1. sin θ = cos (90° – θ)
4. cos θ = sin (90° – θ)
2. tan θ = cot (90° – θ)
5. cot θ = tan (90° – θ)
3. sec θ = csc (90° – θ)
6. csc θ = sec (90° – θ)

No comments:

Post a Comment